
Skip to main content

PuppeteerDocsPuppeteer API@puppeteer/browsers API
22.4.1	Next
	22.4.1
	

	Archived versions
	22.4.0
	22.3.0
	22.2.0
	22.1.0
	22.0.0
	21.11.0
	21.10.0
	21.9.0
	21.8.0
	21.7.0
	21.6.1
	21.6.0
	21.5.2
	21.5.1
	21.5.0
	21.4.1
	21.4.0
	21.3.8
	21.3.7
	21.3.6
	21.3.5
	21.3.4
	21.3.3
	21.3.2
	21.3.1
	21.3.0
	21.2.1
	21.2.0
	21.1.1
	21.1.0
	21.0.3
	21.0.2
	21.0.1
	21.0.0
	20.9.0
	20.8.3
	20.8.2
	20.8.1
	20.8.0
	20.7.4
	20.7.3
	20.7.2
	20.7.1
	20.7.0
	20.6.0
	20.5.0
	20.4.0
	20.3.0
	20.2.1
	20.2.0
	20.1.2
	20.1.1
	20.1.0
	20.0.0
	19.11.1
	19.11.0
	19.10.1
	19.10.0
	19.9.1
	19.9.0
	19.8.5
	19.8.4
	19.8.3
	19.8.2
	19.8.1
	19.8.0
	19.7.5
	19.7.4
	19.7.3
	19.7.2
	19.7.1
	19.7.0
	19.6.3
	19.6.2
	19.6.1
	19.6.0
	19.5.2
	19.5.1
	19.5.0
	19.4.1
	19.4.0
	19.3.0
	19.2.2
	19.2.1
	19.2.0
	19.1.2
	19.1.1
	19.1.0
	19.0.0
	18.2.1
	18.2.0
	18.1.0
	18.0.5
	18.0.4
	18.0.3
	18.0.2
	18.0.1
	18.0.0
	17.1.3
	17.1.2
	17.1.1
	17.1.0
	17.0.0
	16.2.0
	16.1.1
	16.1.0
	16.0.0
	15.5.0
	15.4.2
	15.4.1
	15.4.0
	15.3.2
	15.3.1
	15.3.0

Search

	Puppeteer
	Guides
	Configuration
	Query Selectors
	Locators
	Evaluate JavaScript
	Docker
	Request Interception
	Chrome Extensions
	Debugging

	Integrations
	Angular Schematics

	Experimental WebDriver BiDi support
	Chromium Support
	Troubleshooting
	Contributing
	FAQ

	
	Puppeteer

Version: 22.4.1On this page
Puppeteer

Guides | API | FAQ | Contributing | Troubleshooting

Puppeteer is a Node.js library which provides a high-level API to control
Chrome/Chromium over the
DevTools Protocol.
Puppeteer runs in
headless
mode by default, but can be configured to run in full ("headful")
Chrome/Chromium.

What can I do?

Most things that you can do manually in the browser can be done using Puppeteer!
Here are a few examples to get you started:

	Generate screenshots and PDFs of pages.
	Crawl a SPA (Single-Page Application) and generate pre-rendered content (i.e.
"SSR" (Server-Side Rendering)).
	Automate form submission, UI testing, keyboard input, etc.
	Create an automated testing environment using the latest JavaScript and
browser features.
	Capture a
timeline trace
of your site to help diagnose performance issues.
	Test Chrome Extensions.

Getting Started

Installation

To use Puppeteer in your project, run:

npm i puppeteer
or using yarn
yarn add puppeteer
or using pnpm
pnpm i puppeteer

When you install Puppeteer, it automatically downloads a recent version of
Chrome for Testing (~170MB macOS, ~282MB Linux, ~280MB Windows) and a chrome-headless-shell binary (starting with Puppeteer v21.6.0) that is guaranteed to
work
with Puppeteer. The browser is downloaded to the $HOME/.cache/puppeteer folder
by default (starting with Puppeteer v19.0.0). See configuration for configuration options and environmental variables to control the download behavor.

If you deploy a project using Puppeteer to a hosting provider, such as Render or
Heroku, you might need to reconfigure the location of the cache to be within
your project folder (see an example below) because not all hosting providers
include $HOME/.cache into the project's deployment.

For a version of Puppeteer without the browser installation, see
puppeteer-core.

If used with TypeScript, the minimum supported TypeScript version is 4.7.4.

Configuration

Puppeteer uses several defaults that can be customized through configuration
files.

For example, to change the default cache directory Puppeteer uses to install
browsers, you can add a .puppeteerrc.cjs (or puppeteer.config.cjs) at the
root of your application with the contents

const {join} = require('path');

/**
 * @type {import("puppeteer").Configuration}
 */
module.exports = {
 // Changes the cache location for Puppeteer.
 cacheDirectory: join(__dirname, '.cache', 'puppeteer'),
};

After adding the configuration file, you will need to remove and reinstall
puppeteer for it to take effect.

See the configuration guide for more
information.

puppeteer-core

For every release since v1.7.0 we publish two packages:

	puppeteer
	puppeteer-core

puppeteer is a product for browser automation. When installed, it downloads
a version of Chrome, which it then drives using puppeteer-core. Being an
end-user product, puppeteer automates several workflows using reasonable
defaults that can be customized.

puppeteer-core is a library to help drive anything that supports DevTools
protocol. Being a library, puppeteer-core is fully driven through its
programmatic interface implying no defaults are assumed and puppeteer-core
will not download Chrome when installed.

You should use puppeteer-core if you are
connecting to a remote browser
or managing browsers yourself.
If you are managing browsers yourself, you will need to call
puppeteer.launch with
an explicit
executablePath
(or channel if it's
installed in a standard location).

When using puppeteer-core, remember to change the import:

import puppeteer from 'puppeteer-core';

Usage

Puppeteer follows the latest
maintenance LTS version of
Node.

Puppeteer will be familiar to people using other browser testing frameworks. You
launch/connect
a browser,
create some
pages, and then manipulate them with
Puppeteer's API.

For more in-depth usage, check our guides
and examples.

Example

The following example searches developer.chrome.com for blog posts with text "automate beyond recorder", click on the first result and print the full title of the blog post.

import puppeteer from 'puppeteer';

(async () => {
 // Launch the browser and open a new blank page
 const browser = await puppeteer.launch();
 const page = await browser.newPage();

 // Navigate the page to a URL
 await page.goto('https://developer.chrome.com/');

 // Set screen size
 await page.setViewport({width: 1080, height: 1024});

 // Type into search box
 await page.type('.devsite-search-field', 'automate beyond recorder');

 // Wait and click on first result
 const searchResultSelector = '.devsite-result-item-link';
 await page.waitForSelector(searchResultSelector);
 await page.click(searchResultSelector);

 // Locate the full title with a unique string
 const textSelector = await page.waitForSelector(
 'text/Customize and automate'
);
 const fullTitle = await textSelector?.evaluate(el => el.textContent);

 // Print the full title
 console.log('The title of this blog post is "%s".', fullTitle);

 await browser.close();
})();

Default runtime settings

1. Uses Headless mode

By default Puppeteer launches Chrome in
the Headless mode.

const browser = await puppeteer.launch();
// Equivalent to
const browser = await puppeteer.launch({headless: true});

Before v22, Puppeteer launched the old Headless mode by default.
The old headless mode is now known as
chrome-headless-shell
and ships as a separate binary. chrome-headless-shell does not match the
behavior of the regular Chrome completely but it is currently more performant
for automation tasks where the complete Chrome feature set is not needed. If the performance
is more important for your use case, switch to chrome-headless-shell as following:

const browser = await puppeteer.launch({headless: 'shell'});

To launch a "headful" version of Chrome, set the
headless to false
option when launching a browser:

const browser = await puppeteer.launch({headless: false});

2. Runs a bundled version of Chrome

By default, Puppeteer downloads and uses a specific version of Chrome so its
API is guaranteed to work out of the box. To use Puppeteer with a different
version of Chrome or Chromium, pass in the executable's path when creating a
Browser instance:

const browser = await puppeteer.launch({executablePath: '/path/to/Chrome'});

You can also use Puppeteer with Firefox. See
status of cross-browser support for
more information.

See
this article
for a description of the differences between Chromium and Chrome.
This article
describes some differences for Linux users.

3. Creates a fresh user profile

Puppeteer creates its own browser user profile which it cleans up on every
run.

Using Docker

See our Docker guide.

Using Chrome Extensions

See our Chrome extensions guide.

Resources

	API Documentation
	Guides
	Examples
	Community list of Puppeteer resources

Contributing

Check out our contributing guide to get an
overview of Puppeteer development.

FAQ

Our FAQ has migrated to
our site.

Next
Guides
	Getting Started	Installation
	Usage
	Default runtime settings

	Resources
	Contributing
	FAQ

Community
	Stack Overflow
	Twitter
	YouTube

Copyright © 2024 Google, Inc.

